On the Soundness and Completeness of Equational Predicate Logics

نویسنده

  • George Tourlakis
چکیده

We present two different formalizations of Equational Predicate Logic, that is, first order logic that uses Leibniz’s substitution of “equals for equals” as a primary rule of inference. We prove that both versions are sound and complete. A by-product of this study is an alternative proof to that contained in [GS3], that the “full” Leibniz rule is strictly stronger than the “no-capture” Leibniz rule, this result obtained here for a complete Logic. We also show that under some reasonable conditions, propositional Leibniz, no-capture Leibniz, and a full-capture version are all equivalent, provided that the latter is restricted to act on universally valid premises whenever capture is allowed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Coalgebraic modal logic: soundness, completeness and decidability of local consequence

This paper studies finitary modal logics, interpreted over coalgebras for an endofunctor, and establishes soundness, completeness and decidability results. The logics are studied within the abstract framework of coalgebraic modal logic, which can be instantiated with arbitrary endofunctors on the category of sets. This is achieved through the use of predicate liftings, which generalise atomic p...

متن کامل

A Hilbert-Style Axiomatisation for Equational Hybrid Logic

This paper introduces an axiomatisation for equational hybrid logic based on previous axiomatizations and natural deduction systems for propositional and firstorder hybrid logic. Its soundness and completeness is discussed. This work is part of a broader research project on the development a general proof calculus for hybrid logics.

متن کامل

Category-based Semantics for Equational and Constraint Logic Programming

This thesis proposes a general framework for equational logic programming, called catf:gory­ based equational logic by placing the general principles underlying the design of the pro­ gramming language Eqlog and formulated by Goguen and Meseguer into an abstract form. This framework generalises equational deduction to an arbitrary category satisfy­ ing certain natural conditions; completeness i...

متن کامل

Translation Methods for Non-Classical Logics: An Overview

This paper gives an overview on translation methods we have developed for nonclassical logics, in particular for modal logics. Optimized ’functional’ and semi-functional translation into predicate logic is described. Using normal modal logic as an intermediate logic, other logics can be translated into predicate logic as well. As an example, the translation of modal logic of graded modalities i...

متن کامل

Stone-Type Dualities for Separation Logics

Stone-type duality theorems, which relate algebraic and relational/topological models, are important tools in logic because — in addition to elegant abstraction — they strengthen soundness and completeness to a categorical equivalence, yielding a framework through which both algebraic and topological methods can be brought to bear on a logic. We give a systematic treatment of Stone-type duality...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Log. Comput.

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2001